Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
1.
medRxiv ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38463998

RESUMO

The dynamics of SARS-CoV-2 transmission are influenced by a variety of factors, including social restrictions and the emergence of distinct variants. In this study, we delve into the origins and dissemination of the Alpha, Delta, and Omicron variants of concern in Galicia, northwest Spain. For this, we leveraged genomic data collected by the EPICOVIGAL Consortium and from the GISAID database, along with mobility information from other Spanish regions and foreign countries. Our analysis indicates that initial introductions during the Alpha phase were predominantly from other Spanish regions and France. However, as the pandemic progressed, introductions from Portugal and the USA became increasingly significant. Notably, Galicia's major coastal cities emerged as critical hubs for viral transmission, highlighting their role in sustaining and spreading the virus. This research emphasizes the critical role of regional connectivity in the spread of SARS-CoV-2 and offers essential insights for enhancing public health strategies and surveillance measures.

2.
Virus Evol ; 10(1): veae018, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510921

RESUMO

Viral mutations within patients nurture the adaptive potential of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) during chronic infections, which are a potential source of variants of concern. However, there is no integrated framework for the evolutionary analysis of intra-patient SARS-CoV-2 serial samples. Herein, we describe Viral Intra-Patient Evolution Reporting and Analysis (VIPERA), a new software that integrates the evaluation of the intra-patient ancestry of SARS-CoV-2 sequences with the analysis of evolutionary trajectories of serial sequences from the same viral infection. We have validated it using positive and negative control datasets and have successfully applied it to a new case, which revealed population dynamics and evidence of adaptive evolution. VIPERA is available under a free software license at https://github.com/PathoGenOmics-Lab/VIPERA.

3.
Nature ; 627(8002): 182-188, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38267579

RESUMO

The origins of treponemal diseases have long remained unknown, especially considering the sudden onset of the first syphilis epidemic in the late 15th century in Europe and its hypothesized arrival from the Americas with Columbus' expeditions1,2. Recently, ancient DNA evidence has revealed various treponemal infections circulating in early modern Europe and colonial-era Mexico3-6. However, there has been to our knowledge no genomic evidence of treponematosis recovered from either the Americas or the Old World that can be reliably dated to the time before the first trans-Atlantic contacts. Here, we present treponemal genomes from nearly 2,000-year-old human remains from Brazil. We reconstruct four ancient genomes of a prehistoric treponemal pathogen, most closely related to the bejel-causing agent Treponema pallidum endemicum. Contradicting the modern day geographical niche of bejel in the arid regions of the world, the results call into question the previous palaeopathological characterization of treponeme subspecies and showcase their adaptive potential. A high-coverage genome is used to improve molecular clock date estimations, placing the divergence of modern T. pallidum subspecies firmly in pre-Columbian times. Overall, our study demonstrates the opportunities within archaeogenetics to uncover key events in pathogen evolution and emergence, paving the way to new hypotheses on the origin and spread of treponematoses.


Assuntos
Evolução Molecular , Genoma Bacteriano , Treponema pallidum , Infecções por Treponema , Humanos , Brasil/epidemiologia , Brasil/etnologia , Europa (Continente)/epidemiologia , Genoma Bacteriano/genética , História do Século XV , História Antiga , Sífilis/epidemiologia , Sífilis/história , Sífilis/microbiologia , Sífilis/transmissão , Treponema pallidum/classificação , Treponema pallidum/genética , Treponema pallidum/isolamento & purificação , Infecções por Treponema/epidemiologia , Infecções por Treponema/história , Infecções por Treponema/microbiologia , Infecções por Treponema/transmissão
4.
Lancet Microbe ; 5(1): e43-e51, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38061383

RESUMO

BACKGROUND: In June, 2021, WHO published the most complete catalogue to date of resistance-conferring mutations in Mycobacterium tuberculosis. Here, we aimed to assess the performance of genome-based antimicrobial resistance prediction using the catalogue and its potential for improving diagnostics in a real low-burden setting. METHODS: In this retrospective population-based genomic study M tuberculosis isolates were collected from 25 clinical laboratories in the low-burden setting of the Valencia Region, Spain. Culture-positive tuberculosis cases reported by regional public health authorities between Jan 1, 2014, and Dec 31, 2016, were included. The drug resistance profiles of these isolates were predicted by the genomic identification, via whole-genome sequencing (WGS), of the high-confidence resistance-causing variants included in the catalogue and compared with the phenotype. We determined the minimum inhibitory concentration (MIC) of the isolates with discordant resistance profiles using the resazurin microtitre assay. FINDINGS: WGS was performed on 785 M tuberculosis complex culture-positive isolates, and the WGS resistance prediction sensitivities were: 85·4% (95% CI 70·8-94·4) for isoniazid, 73·3% (44·9-92·2) for rifampicin, 50·0% (21·1-78·9) for ethambutol, and 57·1% (34·0-78·2) for pyrazinamide; all specificities were more than 99·6%. Sensitivity values were lower than previously reported, but the overall pan-susceptibility accuracy was 96·4%. Genotypic analysis revealed that four phenotypically susceptible isolates carried mutations (rpoB Leu430Pro and rpoB Ile491Phe for rifampicin and fabG1 Leu203Leu for isoniazid) known to give borderline resistance in standard phenotypic tests. Additionally, we identified three putative resistance-associated mutations (inhA Ser94Ala, katG Leu48Pro, and katG Gly273Arg for isoniazid) in samples with substantially higher MICs than those of susceptible isolates. Combining both genomic and phenotypic data, in accordance with the WHO diagnostic guidelines, we could detect two new multidrug-resistant cases. Additionally, we detected 11 (1·6%) of 706 isolates to be monoresistant to fluoroquinolone, which had been previously undetected. INTERPRETATION: We showed that the WHO catalogue enables the detection of resistant cases missed in phenotypic testing in a low-burden region, thus allowing for better patient-tailored treatment. We also identified mutations not included in the catalogue, relevant at the local level. Evidence from this study, together with future updates of the catalogue, will probably lead in the future to the partial replacement of culture testing with WGS-based drug susceptibility testing in our setting. FUNDING: European Research Council and the Spanish Ministerio de Ciencia.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Mycobacterium tuberculosis/genética , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Isoniazida/uso terapêutico , Rifampina/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Testes de Sensibilidade Microbiana , Estudos Retrospectivos , Espanha/epidemiologia , Farmacorresistência Bacteriana Múltipla/genética , Mutação/genética , Genômica , Organização Mundial da Saúde
6.
Viruses ; 15(10)2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37896809

RESUMO

The 2023 International Virus Bioinformatics Meeting was held in Valencia, Spain, from 24-26 May 2023, attracting approximately 180 participants worldwide. The primary objective of the conference was to establish a dynamic scientific environment conducive to discussion, collaboration, and the generation of novel research ideas. As the first in-person event following the SARS-CoV-2 pandemic, the meeting facilitated highly interactive exchanges among attendees. It served as a pivotal gathering for gaining insights into the current status of virus bioinformatics research and engaging with leading researchers and emerging scientists. The event comprised eight invited talks, 19 contributed talks, and 74 poster presentations across eleven sessions spanning three days. Topics covered included machine learning, bacteriophages, virus discovery, virus classification, virus visualization, viral infection, viromics, molecular epidemiology, phylodynamic analysis, RNA viruses, viral sequence analysis, viral surveillance, and metagenomics. This report provides rewritten abstracts of the presentations, a summary of the key research findings, and highlights shared during the meeting.


Assuntos
Bacteriófagos , Vírus de RNA , Viroses , Vírus , Humanos , Biologia Computacional , Vírus/genética
7.
Lancet Microbe ; 4(12): e994-e1004, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37827185

RESUMO

BACKGROUND: The increasing incidence of syphilis and the limitations of first-line treatment with penicillin, particularly in neurosyphilis, neonatal syphilis, and pregnancy, highlight the need to expand the therapeutic repertoire for effective management of this disease. We assessed the in-vitro efficacy of 18 antibiotics from several classes on Treponema pallidum subspecies pallidum (T pallidum), the syphilis bacteria. METHODS: Using the in-vitro culture system for T pallidum, we exposed the pathogen to a concentration range of each tested antibiotic. After a 7-day incubation, the treponemal burden was evaluated by quantitative PCR targeting the T pallidum tp0574 gene. The primary outcome was the minimum inhibitory concentration (MIC) at which the quantitative PCR values were not significantly higher than the inoculum wells. We also investigated the susceptibility of macrolide-resistant strains to high concentrations of azithromycin, and the possibility of developing resistance to linezolid, a proposed candidate for syphilis treatment. FINDINGS: Amoxicillin, ceftriaxone, several oral cephalosporins, tedizolid, and dalbavancin exhibited anti-treponemal activity at concentrations achievable in human plasma following regular dosing regimens. The experiments revealed a MIC for amoxicillin at 0·02 mg/L, ceftriaxone at 0·0025 mg/L, cephalexin at 0·25 mg/L, cefetamet and cefixime at 0·0313 mg/L, cefuroxime at 0·0156 mg/L, tedizolid at 0·0625 mg/L, spectinomycin at 0·1 mg/L, and dalbavancin at 0·125 mg/L. The MIC for zoliflodacin and balofloxacin was 2 mg/L. Ertapenem, isoniazid, pyrazinamide, and metronidazole had either a poor or no effect. Azithromycin concentrations up to 2 mg/L (64 times the MIC) were ineffective against strains carrying mutations associated to macrolide resistance. Exposure to subtherapeutic doses of linezolid for 10 weeks did not induce phenotypic or genotypic resistance. INTERPRETATION: Cephalosporins and oxazolidinones are potential candidates for expanding the current therapeutic repertoire for syphilis. Our findings warrant testing efficacy in animal models and, if successful, clinical assessment of efficacy. FUNDING: European Research Council.


Assuntos
Sífilis , Treponema pallidum , Animais , Recém-Nascido , Humanos , Treponema pallidum/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Azitromicina/farmacologia , Azitromicina/uso terapêutico , Sífilis/tratamento farmacológico , Sífilis/epidemiologia , Sífilis/microbiologia , Macrolídeos/farmacologia , Macrolídeos/uso terapêutico , Linezolida/farmacologia , Linezolida/uso terapêutico , Ceftriaxona/farmacologia , Ceftriaxona/uso terapêutico , Globo Pálido , Farmacorresistência Bacteriana/genética , Amoxicilina/farmacologia , Amoxicilina/uso terapêutico , Treponema
8.
Sci Rep ; 13(1): 16012, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37749145

RESUMO

Hepatitis C virus (HCV) reinfection may hamper HCV elimination in prisons. We aimed to (i) determine the reinfection rate in people treated for HCV in Catalan prisons, (ii) measure reinfection in people entering prisons, and (iii) characterize the molecular epidemiology of HCV in prisons and people who inject drugs (PWID) in the community. Re-HCV was a prospective study in eight prisons (2019-2020) including two groups: (1) people cured with treatment in prison and followed-up every 6 months, and (2) people testing HCV-RNA positive at incarceration. Bio-behavioral data were collected. HCV isolates were sequenced and phylogenetically analyzed with those of PWID in the community. Reinfection follow-up after treatment was achieved in 97 individuals (103.05 person-years). Two reinfections were detected, resulting in an incidence ≤ 10/100 person-years. Among people entering prison, 2% (359/17,732) were viremic, of which 334 (93.0%) were included, and 44 (13.5%) presented with reinfection (84.7% being PWID). Frequently, HCV isolates in prisons and PWID in the community were phylogenetically related. Although HCV reinfection is low after treatment, it is common in people entering Catalan prisons. To maintain a low HCV prevalence in prisons, harm-reduction services and test-and-treat programs for PWID should be strengthened both inside and outside prisons.


Assuntos
Hepatite C , Abuso de Substâncias por Via Intravenosa , Humanos , Hepacivirus/genética , Prisões , Espanha/epidemiologia , Reinfecção , Incidência , Epidemiologia Molecular , Estudos Prospectivos , Hepatite C/epidemiologia
9.
Microb Genom ; 9(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37272914

RESUMO

Carbapenem-resistant Klebsiella pneumoniae is a major cause of hospital-acquired infections and the fastest-growing pathogen in Europe. Carbapenem resistance was detected at the Consorcio Hospital General Universitario de Valencia (CHGUV) in early 2015, and there has been a significant increase in carbapenem-resistant isolates since then. In this study, we collected carbapenem-resistant isolates from this hospital during the period of increase (from 2015 to 2019) and studied how K. pneumoniae carbapenem-resistant isolates emerged and spread in the hospital. A total of 225 isolates were subjected to whole-genome sequencing with Illumina NextSeq. We characterized the isolates by identifying lineages and antimicrobial resistance genes and plasmids, especially those related to reduced carbapenem susceptibility. Our findings show that the initial carbapenem resistance emergence and dissemination at the CHGUV occurred during a short period of 1 year. Furthermore, it was complex, involving six different lineages of types ST307, ST11, ST101 and ST437, different resistance-determinant factors, including OXA-48, NDM-1, NDM-23 and DHA-1, and different plasmids.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Infecções por Klebsiella , Humanos , Klebsiella pneumoniae/genética , beta-Lactamases/genética , Centros de Atenção Terciária , Infecções por Klebsiella/epidemiologia , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Carbapenêmicos/farmacologia , Genômica , Células Clonais
10.
Viruses ; 15(5)2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37243281

RESUMO

The environmental impact of uncultured phages is shaped by their preferred life cycle (lytic or lysogenic). However, our ability to predict it is very limited. We aimed to discriminate between lytic and lysogenic phages by comparing the similarity of their genomic signatures to those of their hosts, reflecting their co-evolution. We tested two approaches: (1) similarities of tetramer relative frequencies, (2) alignment-free comparisons based on exact k = 14 oligonucleotide matches. First, we explored 5126 reference bacterial host strains and 284 associated phages and found an approximate threshold for distinguishing lysogenic and lytic phages using both oligonucleotide-based methods. The analysis of 6482 plasmids revealed the potential for horizontal gene transfer between different host genera and, in some cases, distant bacterial taxa. Subsequently, we experimentally analyzed combinations of 138 Klebsiella pneumoniae strains and their 41 phages and found that the phages with the largest number of interactions with these strains in the laboratory had the shortest genomic distances to K. pneumoniae. We then applied our methods to 24 single-cells from a hot spring biofilm containing 41 uncultured phage-host pairs, and the results were compatible with the lysogenic life cycle of phages detected in this environment. In conclusion, oligonucleotide-based genome analysis methods can be used for predictions of (1) life cycles of environmental phages, (2) phages with the broadest host range in culture collections, and (3) potential horizontal gene transfer by plasmids.


Assuntos
Bacteriófagos , Bacteriófagos/genética , Lisogenia , Genômica , Genoma Viral , Bactérias/genética , Oligonucleotídeos
11.
Int J Mol Sci ; 24(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37239920

RESUMO

Millions of SARS-CoV-2 whole genome sequences have been generated to date. However, good quality data and adequate surveillance systems are required to contribute to meaningful surveillance in public health. In this context, the network of Spanish laboratories for coronavirus (RELECOV) was created with the main goal of promoting actions to speed up the detection, analyses, and evaluation of SARS-CoV-2 at a national level, partially structured and financed by an ECDC-HERA-Incubator action (ECDC/GRANT/2021/024). A SARS-CoV-2 sequencing quality control assessment (QCA) was developed to evaluate the network's technical capacity. QCA full panel results showed a lower hit rate for lineage assignment compared to that obtained for variants. Genomic data comprising 48,578 viral genomes were studied and evaluated to monitor SARS-CoV-2. The developed network actions showed a 36% increase in sharing viral sequences. In addition, analysis of lineage/sublineage-defining mutations to track the virus showed characteristic mutation profiles for the Delta and Omicron variants. Further, phylogenetic analyses strongly correlated with different variant clusters, obtaining a robust reference tree. The RELECOV network has made it possible to improve and enhance the genomic surveillance of SARS-CoV-2 in Spain. It has provided and evaluated genomic tools for viral genome monitoring and characterization that make it possible to increase knowledge efficiently and quickly, promoting the genomic surveillance of SARS-CoV-2 in Spain.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Espanha/epidemiologia , Filogenia , SARS-CoV-2/genética , COVID-19/epidemiologia , COVID-19/genética , Genômica , Mutação
12.
Antibiotics (Basel) ; 12(5)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37237786

RESUMO

Salmonella enterica subspecies enterica is one of the most important foodborne pathogens and the causative agent of salmonellosis, which affects both humans and animals producing numerous infections every year. The study and understanding of its epidemiology are key to monitoring and controlling these bacteria. With the development of whole-genome sequencing (WGS) technologies, surveillance based on traditional serotyping and phenotypic tests of resistance is being replaced by genomic surveillance. To introduce WGS as a routine methodology for the surveillance of food-borne Salmonella in the region, we applied this technology to analyze a set of 141 S. enterica isolates obtained from various food sources between 2010 and 2017 in the Comunitat Valenciana (Spain). For this, we performed an evaluation of the most relevant Salmonella typing methods, serotyping and sequence typing, using both traditional and in silico approaches. We extended the use of WGS to detect antimicrobial resistance determinants and predicted minimum inhibitory concentrations (MICs). Finally, to understand possible contaminant sources in this region and their relationship to antimicrobial resistance (AMR), we performed cluster detection combining single-nucleotide polymorphism (SNP) pairwise distances and phylogenetic and epidemiological data. The results of in silico serotyping with WGS data were highly congruent with those of serological analyses (98.5% concordance). Multi-locus sequence typing (MLST) profiles obtained with WGS information were also highly congruent with the sequence type (ST) assignment based on Sanger sequencing (91.9% coincidence). In silico identification of antimicrobial resistance determinants and minimum inhibitory concentrations revealed a high number of resistance genes and possible resistant isolates. A combined phylogenetic and epidemiological analysis with complete genome sequences revealed relationships among isolates indicative of possible common sources for isolates with separate sampling in time and space that had not been detected from epidemiological information. As a result, we demonstrate the usefulness of WGS and in silico methods to obtain an improved characterization of S. enterica enterica isolates, allowing better surveillance of the pathogen in food products and in potential environmental and clinical samples of related interest.

13.
Cell Rep ; 42(2): 112048, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36753420

RESUMO

Bacteriophages play key roles in bacterial ecology and evolution and are potential antimicrobials. However, the determinants of phage-host specificity remain elusive. Here, we isolate 46 phages to challenge 138 representative clinical isolates of Klebsiella pneumoniae, a widespread opportunistic pathogen. Spot tests show a narrow host range for most phages, with <2% of 6,319 phage-host combinations tested yielding detectable interactions. Bacterial capsule diversity is the main factor restricting phage host range. Consequently, phage-encoded depolymerases are key determinants of host tropism, and depolymerase sequence types are associated with the ability to infect specific capsular types across phage families. However, all phages with a broader host range found do not encode canonical depolymerases, suggesting alternative modes of entry. These findings expand our knowledge of the complex interactions between bacteria and their viruses and point out the feasibility of predicting the first steps of phage infection using bacterial and phage genome sequences.


Assuntos
Bacteriófagos , Klebsiella , Humanos , Klebsiella/genética , Bacteriófagos/genética , Tropismo Viral , Klebsiella pneumoniae/genética , Genoma Viral
14.
Microbiol Spectr ; 11(2): e0258522, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-36722967

RESUMO

Since the discovery of blaNDM-1, NDM ß-lactamases have become one of the most widespread carbapenemases worldwide. To date, 43 different NDM variants have been reported but some, such as blaNDM-23, have not been characterized in detail yet. Here, we describe the emergence of a novel blaNDM-23 allele from a blaNDM-1 ancestor and the multidrug resistance plasmid that has disseminated it through a Klebsiella pneumoniae ST437 clone in several Spanish hospitals. Between 2016 and 2019, 1,972 isolates were collected in an epidemiological survey for extended-spectrum-ß-lactamase (ESBL)-producing Klebsiella pneumoniae in the Comunitat Valenciana (Spain). Three carbapenem-resistant strains failed to be detected by carbapenemase-producing Enterobacteriaceae (CPE) screening tests. These isolates carried a blaNDM-23 gene. To characterize this gene, its emergence, and its dissemination, we performed antimicrobial susceptibility tests, hybrid sequencing with Illumina and Nanopore technologies, and phylogenetic analyses. The MICs of the blaNDM-23 allele were identical to those of the blaNDM-1 allele. The blaNDM-23 allele was found in 14 isolates on a 97-kb nonmobilizable, multidrug-resistant plasmid carrying 19 resistance genes for 9 different antimicrobial families. In this plasmid, the blaNDM-23 gene is in the variable region of a complex class 1 integron with a singular genetic environment. The small genetic distance between blaNDM-23-producing isolates reflects a 5-year-long clonal dispersion involving several hospitals and interregional spread. We have characterized the genomic and epidemiological contexts in the emergence and community spread of a new blaNDM-23 allele in a multidrug resistance (MDR) plasmid of Klebsiella pneumoniae. IMPORTANCE At a time when antimicrobial resistance has become one of the biggest concerns worldwide, the emergence of novel alleles and extremely drug-resistant plasmids is a threat to public health worldwide, especially when they produce carbapenem resistance in one of the most problematic pathogens, such as Klebsiella pneumoniae. We used genomic epidemiology to describe the emergence of a novel NDM-23 allele and identify it in a MDR plasmid that has disseminated through a K. pneumoniae ST437 clone in several hospitals in Spain. Using bioinformatic and phylogenetic analyses, we have traced the evolutionary and epidemiological route of the new allele, the hosting plasmid, and the strain that carried both of them from Pakistan to Spain. A better understanding of the NDM-producing K. pneumoniae populations and plasmids has made evident the spread of this clone through the region, enhancing the importance of genomic surveillance in the control of antimicrobial resistance.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Humanos , Antibacterianos/farmacologia , Filogenia , Plasmídeos/genética , beta-Lactamases/genética , Carbapenêmicos , Farmacorresistência Bacteriana Múltipla/genética , Testes de Sensibilidade Microbiana , Infecções por Klebsiella/epidemiologia
15.
Clin Microbiol Infect ; 29(2): 256.e1-256.e4, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36115649

RESUMO

OBJECTIVES: To compare the RNA loads of severe acute respiratory syndrome coronavirus 2 in nasopharyngeal specimens collected from patients with breakthrough coronavirus disease 2019 (COVID-19) caused by the Delta variant with those in specimens collected from patients with breakthrough COVID-19 caused by the Omicron variant. METHODS: A retrospective, observational study was conducted, including 240 consecutive adult out-patients, of whom 121 (74 females; median age, 40 years) had COVID-19 due to the Omicron variant and 119 (65 females; median age, 48 years) had COVID-19 caused by the Delta variant. The viral RNA load was quantitated using the TaqPath COVID-19 Combo Kit (Thermo Fisher Scientific, Waltham, MS, USA). The viability platinum chloride reverse transcription-PCR assay was used to discriminate between potentially infectious viral particles and free (encapsidated) viral RNA. RESULTS: Overall, the viral RNA loads were significantly higher (p 0.003) for the Omicron variant (median, 8.1 log10 copies/mL; range, 4.0-10.9 log10 copies/mL) than for the Delta variant (median, 7.5 log10 copies/mL; range, 3.0-11.6 log10 copies/mL). A trend towards higher viral loads was noticed for Omicron compared with that for Delta across the following time frames since vaccination: 16-90 days (median, 6.83 vs. 5.88 log10 copies/mL, respectively; range, 3.91-10.68 vs. 3.67-9.66 log10 copies/mL, respectively; p 0.10), 91-180 days (median, 8.09 vs. 7.46 log10 copies/mL, respectively; range, 4.30-10.92 vs. 3.03-11.56 log10 copies/mL, respectively; p 0.003) and 181-330 days (median, 8.56 vs. 8.10 log10 copies/mL, respectively; range, 6.51-10.29 vs. 3.03-10.61 log10 copies/mL, respectively; p 0.11). The platinum chloride treated or untreated reverse transcription-PCR cycle threshold ratio for the nucleocapsid gene as the target was slightly higher for Omicron than for Delta (median, 0.62 vs. 0.57, respectively; range, 0.57-0.98 vs. 0.61-0.87, respectively), although statistical significance was not reached (p 0.10). CONCLUSION: The time elapsed since vaccination has a major impact on the RNA loads of severe acute respiratory syndrome coronavirus 2 in nasopharyngeal specimens, particularly for the Omicron variant. The Omicron variant may be better adapted for replication in the upper respiratory tract than the Delta variant, in which this is unlikely given its more efficient generation of viral particles.


Assuntos
COVID-19 , SARS-CoV-2 , Adulto , Feminino , Humanos , Pessoa de Meia-Idade , SARS-CoV-2/genética , Estudos Retrospectivos , RNA Viral/genética
16.
Front Microbiol ; 14: 1278860, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38179446

RESUMO

Listeria monocytogenes is a foodborne pathogen that can produce serious, even fatal, infections. Among other foods, it can be found in unpasteurized dairy and ready-to-eat products. Surveillance of L. monocytogenes is of great interest since sources of infection are difficult to determine due to the long incubation period, and because the symptoms of listeriosis are similar to other diseases. We performed a genomic study of L. monocytogenes isolated from fresh cheeses and clinical samples from Ecuador. Sixty-five isolates were evaluated and sequenced, 14 isolates from cheese samples and 20 from clinical listeriosis cases from the National Institute of National Institute of Public Health Research, and 31 isolates from artisanal cheese samples from 8 provinces. All isolates exhibited heterogeneous patterns of the presence of pathogenicity islands. All isolates exhibited at least 4 genes from LIPI-1, but all references (26 L. monocytogenes closed genomes available in the NCBI database) showed the complete island, which encompasses 5 genes but is present in only two Ecuadorian isolates. Most isolates lacked gene actA. Genes from LIPI-2 were absent in all isolates. LIPI-3 and LIPI-4 were present in only a few references and isolates. With respect to the stress survival islets, our samples either presented SSI-1 or SSI-F2365, except for one isolate that presented SSI-F2365 and also one gene from SSI-1. None of the samples presented SSI-2. The predominant ST (sequence type) was ST2 (84.62% 55/65), and the only ST found in food (93.33% 42/45) and clinical samples (65% 13/20). Isolates were not grouped according to their sampling origin, date, or place in a phylogenetic tree obtained from the core alignment. The presence of ST2 in food and clinical samples, with high genomic similarity, suggests a foodborne infection risk linked to the consumption of fresh cheeses in Ecuador.

17.
mSphere ; 7(6): e0034622, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36448779

RESUMO

Limiting outbreaks in long-term care facilities (LTCFs) is a cornerstone strategy to avoid an excess of COVID-19-related morbidity and mortality and to reduce its burden on the health system. We studied a large outbreak that occurred at an LTCF, combining methods of classical and genomic epidemiology analysis. The outbreak lasted for 31 days among residents, with an attack rate of 98% and 57% among residents and staff, respectively. The case fatality rate among residents was 16% (n = 15). Phylogenetic analysis of 59 SARS-CoV-2 isolates revealed the presence of two closely related viral variants in all cases (B.1.177 lineage), revealing a far more complex outbreak than initially thought and suggesting an initial spread driven by staff members. In turn, our results suggest that resident relocations to mitigate viral spread might have increased the risk of infection for staff members, creating secondary chains of transmission that were responsible for prolonging the outbreak. Our results highlight the importance of considering unnoticed chains of transmission early during an outbreak and making an adequate use and interpretation of diagnostic tests. Outbreak containment measures should be carefully tailored to each LTCF. IMPORTANCE The impact of COVID-19 on long-term care facilities (LTCFs) has been disproportionately large due to the high frailty of the residents. Here, we report epidemiological and genomic findings of a large outbreak that occurred at an LTCF, which ultimately affected almost all residents and nearly half of staff members. We found that the outbreak was initially driven by staff members; however, later resident relocation to limit the outbreak resulted in transmission from residents to staff members, evidencing the complexity and different phases of the outbreak. The phylogenetic analysis of SARS-CoV-2 isolates indicated that two closely related variants were responsible for the large outbreak. Our study highlights the importance of combining methods of classical and genomic epidemiology to take appropriate outbreak containment measures in LTCFs.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Espanha/epidemiologia , Assistência de Longa Duração/métodos , Filogenia , Surtos de Doenças , Genômica
18.
Microb Drug Resist ; 28(12): 1071-1078, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36251890

RESUMO

To reduce the high rates of morbidity and mortality caused by methicillin-resistant Staphylococcus aureus (MRSA) strains, it is essential to prevent their transmission. This can be achieved through molecular surveillance of the infecting strains, for which the detection of the entry of new strains, the analysis of antimicrobial resistance, and their containment are essential. In this study, we have analyzed 190 MRSA isolates obtained at the Consorcio Hospital General Universitario de Valencia (Spain) from 2013 to 2018 with three approaches: Multilocus Sequence Typing, spa, and SCCmec typing. Although the incidence of S. aureus infections detected in the hospital increased in the study period, the frequency of MRSA isolates decreased from 33% to 18%. One hundred seventy-two MRSA isolates were resistant to three or more classes of antimicrobials, especially to fluoroquinolones. No relevant temporal trend in the distribution of antibiotic susceptibility was observed. The combination of the three typing schemes allowed the identification of 74 different clones, of which the combination ST125-t067-IV was the most abundant in the study (27 cases). Members of three clonal complexes, CC5, CC8, and CC22, comprised 91% of the isolates, and included 32 STs and 32 spa types. The emergence of low incidence strains throughout the study period and a large number of isolates resistant to different classes of antibiotics shows the need for epidemiological surveillance of this pathogen. Our study demonstrates that epidemiological and molecular surveillance is a powerful tool to detect the emergence of clinically important MRSA clones.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus/genética , Epidemiologia Molecular , Centros de Atenção Terciária , Infecções Estafilocócicas/epidemiologia , Espanha/epidemiologia , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Tipagem de Sequências Multilocus
19.
J Med Virol ; 94(12): 5836-5840, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35986484

RESUMO

This retrospective observational study compared severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA load in nasopharyngeal specimens (NPs) from patients with breakthrough coronavirus disease 2019 (COVID-19) caused by the Omicron BA.1 or BA.2 sublineages. The convenience sample was composed of 277 outpatients (176 female/112 male; median age, 48 years; range, 12-97) with breakthrough COVID-19 (n = 130 due to BA.1 and n = 147 due to BA.2). All participants had completed a full vaccination schedule and 56% had received a booster vaccine dose at the time of COVID-19 breakthrough microbiological diagnosis. NPs were collected within 7 days (median 2 days) after symptom onset. The TaqPath COVID-19 Combo Kit (Thermo Fisher Scientific) was used to estimate viral loads in NPs. Overall, viral RNA loads in NPs were comparable (p = 0.31) for BA.1 (median, 7.1 log10 copies/ml; range, 2.7-10.6) and BA.2 (median, 7.5 log10 copies/ml; range, 2.7-10.6), yet peak viral load appeared to be reached sooner for BA.2 than for BA.1 (Day 1 vs. Days 3-5; p = 0.002). Time elapsed since last vaccine dose had no significant impact on SARS-CoV-2 RNA loads in the upper respiratory tract (URT) for either BA.1 or BA.2. The data presented do not support that the transmissibility advantage of BA.2 over BA.1 is related to generation of higher viral loads in the URT early after infection.


Assuntos
COVID-19 , COVID-19/diagnóstico , Vacinas contra COVID-19 , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pacientes Ambulatoriais , RNA Viral/genética , SARS-CoV-2/genética
20.
Infect Genet Evol ; 102: 105313, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35688386

RESUMO

Leptospirosis is the most common zoonosis worldwide, and is increasingly common in poor urban communities, where there is inadequate sewage disposal and abundance of domestic and peridomestic animals. There are many risk factors associated with the disease, such as contaminated water exposure, close contact with animals, floods, recreational activities related to water, wet agriculture. The symptoms of leptospirosis are common to other infectious diseases and, if not treated, it can lead to meningitis, liver failure, kidney damage and death. Leptospirosis is caused by 38 pathogenic species of Leptospira, which are divided in almost 30 serogroups and more than 300 serovars. The serological classification (serogroups and serovars) is based on the expression of distinct lipopolysaccharide (LPS) antigens. These antigens are also associated to protective immunity; antibodies against a serovar protect from any member of the same serovar. Serologic and phylogenetic analyses are not congruent probably due to genetic recombination of LPS genes among different leptospiral species. To analyze the importance of recombination in leptospiral evolution, we performed a gene-by-gene tree topology comparison on closed genomes available in public databases at two levels: among core genomes of pathogenic species (34 recombinant among 1213 core genes), and among core genomes of L. interrogans isolates (178/798). We found that most recombinant genes code for proteins involved in translation, ribosomal structure and biogenesis, but also for cell wall, membrane and envelope biogenesis. Besides, our final results showed that half of LPS genes are recombinant (18/36). This is relevant because serovar classification and vaccine development are based on these epitopes. The frequent recombination of LPS-associated genes suggests that natural selection is promoting the survival of recombinant lineages. These results may help understanding the factors that make Leptospira a successful pathogen.


Assuntos
Leptospira , Leptospirose , Animais , Leptospira/genética , Lipopolissacarídeos , Filogenia , Recombinação Genética , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...